
Photoinduced Molecular Transformations. Part 144.¹ One-carbon Intercalation of γ - and δ -Lactones involving the β -Scission of Alkoxyl Radicals as the Key Step: Synthesis of δ - and ϵ -Lactones with α -Substituents

Kazuhiro Kobayashi, Hiroki Minakawa, Hideo Sakurai, Sachiko Kujime and Hiroshi Suginome*

Organic Synthesis Division, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

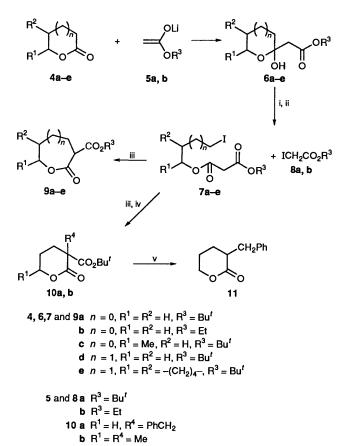
A new general method for a one-carbon intercalation of γ -lactones to δ -lactones and δ -lactones to ε -lactones in three steps involving a selective β -scission of the alkoxyl radicals as the key step is described. The reactions of γ - and δ -lactones with lithioalkyl acetate gave an equilibrated mixture of alkyl (2-hydroxytetrahydrofuran-2-yl)acetates and alkyl (2-hydroxytetrahydropyran-2-yl)acetates, as well as their ring-opened isomers in 62–95% yields, respectively. The photolysis of the hypoiodites of these lactols in benzene containing mercury(II) oxide and iodine with Pyrex-filtered light resulted in a selective endocyclic β -scission of the corresponding alkoxyl radicals to give alkyl iodoalkyl propanedioates in 33–70% yields. Treatment of the iodoalkyl propanedioates with tetraethyl-ammonium bromide and sodium hydride gave alkyl 3,4,5,6-tetrahydro-2-oxo-2*H*-pyran-3-carboxyl-ates or alkyl 2,3,4,5,5a,6,7,8,9,9a-decahydro-2-oxobenz[1]oxepine-3-carboxylate in 61–81% yields. On the other hand, successive treatment of ω -iodoalkyl propanedioates with tetraethylammonium bromide and then benzyl bromide gave a α -disubstituted δ -lactone, which gave a α -monosubstituted δ -lactone upon heating in trifluoroacetic acid under reflux. Cyclopentanone can similarly be transformed into 2-substituted cyclohexanone *via* a three-step procedure.

We reported in earlier papers of this series that the irradiation of the hypoiodites 2 generated *in situ* from lactols 1 with an excess of mercury(II) oxide and iodine with Pyrex-filtered light resulted in a selective β -scission of the C-C bond of the corresponding alkoxyl radicals A to give iodo formates 3 via the carbon-centred radical B, as outlined in Scheme 1.² We have

Scheme 1 Reagents and conditions: i, HgO + $I_2 \rightarrow I_2O$; ii, hv; iii, 2 or I_2

also demonstrated in this and subsequent papers that a variety of saturated heterocycles such as cyclic ethers, cyclic sulfides, cyclic amines, cyclic tellurides and cyclic selenides can be prepared from the iodo formates derived by the β -scission of the alkoxyl radicals.³

In this paper we report on a further application of this selective β -scission of the C–C bond of the alkoxyl radicals generated from the substituted five- and six-membered lactol hypoiodites to a one-carbon intercalation of the γ - and δ -lactones *via* three-steps (Scheme 2).


Ring-expansion reactions are among the most useful methodologies for the preparation of medium- to largemembered rings in organic synthesis.⁴ Thus, a variety of methods for the ring expansion of cyclic ketones, such as the Tiffeneau–Demjanow ring expansion,⁵ diazomethane homo-logation⁶ and others,⁷ have been available. Methods, for the ring expansion of lactones, however, have been little reported.⁸

Preparation of Substrates for Intercalation.—tert-Butyl (2hydroxytetrahydrofuran-2-yl)acetate $6a^9$ and tert-butyl (2hydroxy-3,4,5,6-tetrahydropyran-2-yl)acetate 6d,⁹ reported by Dugan et al. from the reaction of γ -butyrolactone and δ -valerolactone with tert-butyl acetate lithium enolate, were chosen as the first substrates. In addition to these lactols, two other alkyl (2-hydroxytetrahydrofuran-2-yl)acetates, 6b and 6c, and alkyl (2-hydroxy-3,4,5,6-tetrahydropyran-2-yl)acetate 6ewere newly prepared from lactones 4b, 4c and $4e^{10}$ according to the procedure of Dugan et al. as the substrates for the intercalation. Some of these lactols comprised a tautomeric mixture of the lactol form (7–8 parts) and the corresponding ring-opened hydroxy keto ester (3–2 parts), as indicated by their ¹H NMR spectra.

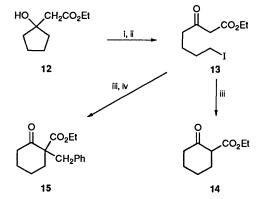
Ring Expansions of the γ - and δ -Lactol Derivatives **6a-e**.—A selective radical cleavage of the lactol ring was carried out according to the procedure previously published by us; irradiation of an equilibrated mixture of lactol **6a** and the corresponding hydroxy keto ester in benzene containing mercury(II) oxide and iodine (2 mol equiv. each) with a 100 W high-pressure Hg arc through a Pyrex-filter at room temperature gave the ω -iodoalkyl diester **7a** resulting from endocyclic cleavage in 45% yield, along with *tert*-butyl iodoacetate resulting from exocyclic cleavage in 9% yield. A similar photolysis of an equilibrated mixture of lactol-hydroxy ketones **6b**, **c** and lactols **6d**, **e** gave ω -iodoalkyl diesters **7b-e** as the major products in 33–70% yield along with an accompanying formation of alkyl iodo acetates (11 and 7% in the case of **6b** and **6c**).

It should be noted that endocyclic cleavage of alkoxyl radicals generated from the lactols takes place in preference to exocyclic cleavage in this β -scission reaction. Since the exocyclic cleavage gives stabilized radicals, \cdot CH₂CO₂R, this β -scission seems to be a kinetically controlled process.

The heating of ω -iodoalkyl propanedioate 7a in benzene

Scheme 2 Reagents and conditions: i, $HgO-I_2$; ii, hv; iii, $NaH-Et_4N^+$ Br^- -benzene, reflux; iv, $C_6H_5CH_2Br$ or MeI; v, CF_3CO_2H , reflux

Table 1


	n	\mathbb{R}^1	R ²	R ³	6 (%) <i>ª</i>	7 (%) ^b	9 (%)*
a	0	н	Н	Bu ^t	95°	45 <i>ª</i>	70
b	0	н	Н	Et	45	33 e	61
с	0	Me	Н	Bu ^t	76	39 ^r	86
d	1	Н	Н	Bu ^t	73	70	g
е	1	$-(CH_2)_{4-}^{h}$		$\mathbf{B}\mathbf{u}^{t}$	62	69	65

^a Isolated yield by distillation. ^b Isolated yield by PLC. ^c Ref. 1. ^d tert-Butyl iodoacetate (9%) was formed as a by-product. ^e Ethyl iodoacetate (11%) was formed as a by-product. ^f tert-Butyl iodoacetate (7%) was formed as a by-product. ^g Intractable mixture. ^h Ref. 8.

containing tetraethylammonium bromide (1 mol equiv.) and sodium hydride (2 mol equiv.) under reflux, followed by the usual work-up (including preparative TLC of the product) gave 3,4,5,6-tetrahydro-2-oxo-2*H*-pyran-3-carboxylate **9a** in 70% yield. A similar treatment of ω -iodoalkyl propanedioate **7b**, **7c** and **7e** in benzene with tetraethylammonium bromide and sodium hydride gave the corresponding δ - and ε -lactones **9b**, **9c** and **9e**, in 61-86% yields, respectively. The attempted cyclization of ω -iodoalkyl propanedioate **7d** under conditions similar to those mentioned above, however, resulted only in the formation of an intractable mixture. Yields for the preparation of compounds **6**, **7** and **9** are given in Table 1.

α-Substituted δ-lactones can be prepared from γ-lactones by the present method; ω -iodoalkyl propanedioate **7a** in benzene containing tetraethylammonium bromide and sodium hydride was cyclized by heating under reflux, after which benzyl bromide was added. Heating the solution under reflux gave *tert*butyl 3-benzyl 3,4,5,6-tetrahydro-2-oxo-2*H*-pyran-3-carboxylate **10a** in 61% yield. Similarly, a mixture of diastereoisomers of α -disubstituted δ -lactone **10b** was obtained in 65% yield from ω -iodoalkyl propanedioate **7c**. Heating a solution of α -disubstituted δ -lactone **10a** in trifluoroacetic acid gave 3-benzyl-3,4,5,6-tetra-hydropyran-2-one **11**¹¹ in 92% yield.

New Ring Expansion of Cyclopentanone to an *a*-Substituted Cyclohexanone.—The aforementioned method concerning the ring expansion of the γ - and δ -lactones can also be applied to the corresponding cyclic ketones. Thus, the submission of a substituted cyclopentanol 12,12 prepared from cyclopentanone, to the above-mentioned procedure gave ethyl 7-iodo-3-oxoheptanoate 13 in 46% yield. An endocyclic cleavage, which has been observed in the alkoxyl radicals generated from 1-methylcyclopentanol¹³ and from cyclopentanol itself,^{13b,14} is again favoured over exocyclic cleavage here, even though the stabilized radicals can be expelled in the latter process. Treatment of this ω -iodo keto ester 13 with tetraethylammonium bromide-sodium hydride gave ethyl 2-oxocyclohexanecarboxylate in 72% yield. On the other hand, successive treatment of ω -iodo keto ester 13 with tetraethylammonium bromide-sodium hydride and benzyl bromide gave ethyl 1benzyl-2-oxocyclohexanecarboxylate 15 in 62% yield.

Scheme 3 Reagents and conditions: i, HgO-I₂; ii, hv; iii, NaH-Et₄N⁺ Br⁻; iv, PhCH₂Br

As mentioned above, since the ethoxycarbonyl group can readily be removed from 2-substituted 2-ethoxycarbonylcyclohexanone 15, the present ring expansion can serve as a new method for the synthesis of 2-substituted cyclohexanones.

Experimental

IR spectra were determined with a JASCO IR-810 spectrophotometer. ¹H NMR spectra were determined in CDCl₃ (SiMe₄ as internal reference) with either an Hitachi R-90 FTNMR spectrometer operating at 90 MHz or a JEOL JNM-GX270 FT NMR spectrometer operating at 270 MHz. J-Values are given in Hz. High- and low-resolution mass spectra were recorded with a JEOL JMS-DX 303 spectrometer. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. Photolysis was carried out with a 100 W high-pressure Hg arc lamp (EIKOSHA, EHB-WU-100).

 α -Substituted Lactols 6.—Lactols 6a and 6d were prepared by the procedure reported by Dugan *et al.*⁹ The other lactols 6b, 6c and 6e were also prepared according to their method.

Ethyl (2-hydroxytetrahydrofuran-2-yl)acetate (n = 0, R¹ = R² = H, R³ = Et) **6b**. A tautomeric mixture with the corresponding hydroxy keto ester (ca. 7:3); b.p. 140 °C (bath temp.)/0.8 Torr;* $v_{max}(neat)/cm^{-1}$ 3400, 1735 and 1715; $\delta(90)$

^{* 1} Torr = 133.3 Pa.

MHz) 1.29 (3 H, t, J 7.04, OCH₂CH₃), 1.6–3.0 (6.1 H, m), 3.46 (0.6 H, s, active methylene of hydroxy keto ester), 3.66 (0.6 H, t, J 5.93, CH₂OH of hydroxy keto ester) and 3.9–4.6 (3.7 H, m); m/z 174 (M⁺, 1.1), 156 [(M – H₂O)⁺, 19] and 87 (100) (Found: M⁺, 174.0899. C₈H₁₄O₄ requires *M*, 174.0892).

tert-Butyl (2-hydroxy-5-methyltetrahydrofuran-2-yl)acetate (n = 0, R¹ = Me, R² = H, R³ = Bu') **6c**. A tautomeric mixture with the corresponding hydroxy keto ester (ca. 8:2); b.p. 105 °C (bath temp.)/0.55 Torr; $v_{max}(neat)/cm^{-1}$ 3450, 1730sh and 1710; δ (90 MHz) 1.20 (2.4 H, d, J 6.15, 5-Me of lactol), 1.32 (0.6 H, d, J 6.38, CHMe-OH of hydroxy keto ester), 1.48 (9 H, s, Bu'), 1.7–2.7 (5.4 H, m), 3.37 (0.6 H, s, active methylene of hydroxy keto ester) and 4.0–4.8 (2 H, m); m/z 198 [(M - H₂O)⁺, 1.7], 160 [(M - Bu')⁺, 2.4], 101 [(CO₂Bu')⁺, 56] and 57 (Bu'⁺, 100) [(Found: M⁺, 198.1248. C₁₁H₁₈O₃ requires (M - H₂O)⁺, 198.1255].

tert-Butyl 2-hydroxy-3,4,4a,5,6,7,8,8a-octahydro-2H-1benzopyran-2-yl)acetate [n = 1, R¹, R² = $-(CH_2)_4$ -, R³ = Bu'] **6e**. A mixture of stereoisomers; b.p. 160 °C (bath temp.)/ 0.3 Torr; $v_{max}(neat)/cm^{-1}$ 3450 and 1710; δ (90 MHz), 0.9–1.9 (22 H, m, containing s at 1.47), 2.48 (2 H, s, CH₂CO₂Bu'), 3.3–3.6 (0.5 H, m, 8a-H of one stereoisomer) and 4.1–4.2 (0.5 H, m, 8a-H of another stereoisomer); m/z 270 (M⁺, 0.3), 252 [(M - H₂O)⁺, 1.2] and 57 (Bu'⁺, 100) (Found: M⁺, 270.1832. C₁₅H₂₆O₄ requires M^+ , 270.1831).

tert-Butyl 3-Iodopropyl Propanedioate (n = 0, $R^1 = R^2 =$ H, $R^3 = Bu^t$) 7a. General Procedure for β -Scission of Lactols 6.—A stirred solution of hemiacetal 6a (202 mg, 1 mmol) in benzene (15 cm³) containing HgO (433 mg, 2 mmol) and iodine (504 mg, 2 mmol) in a Pyrex vessel was irradiated with a 100 W high-pressure Hg arc for 3 h in an atmosphere of nitrogen. The mixture was then filtered through a Celite pad. After the filtrate had been washed with 5% aqueous Na₂SO₃ and then water, it was dried over anhydrous MgSO₄, and then evaporated. The residual oil was purified by PLC on silica gel to afford the title compound 7a (148 mg, 45%) together with tert-butyl iodoacetate (22 mg, 9%). 7a: Rf 0.24 (1:10 EtOAc-hexane); an oil; v_{max} (neat)/cm⁻¹ 1740sh and 1730; δ (90 MHz), 1.47 (9 H, s, Bu^t), 2.0-2.3 (2 H, m, OCH₂CH₂CH₂I), 3.23 (2 H, t, J 6.82, CH₂I), 3.29 (2 H, s, active methylene) and 4.22 (2 H, t, J 5.94, CO_2CH_2); m/z 328 (M⁺, 0.1), 201 [(M - I)⁺, 12], 57 (Bu^{t+}, 100) (Found: M⁺, 328.0170. $C_{10}H_{17}IO_4$ requires M, 328.0172).

Ethyl 3-iodopropyl propanedioate (n = 0, R¹ = R² = H, R³ = Et) 7b. Irradiation for 5 h; R_f 0.43 (1:5 EtOAc-hexane); an oil; v_{max} (neat)/cm⁻¹ 1730; δ (90 MHz), 1.29 (3 H, t, J 7.25, OCH₂CH₃), 2.17 (2 H, quintet, J 6.4, ICH₂CH₂CH₂O), 3.23 (2 H, t, J 6.81, CH₂I), 3.38 (2 H, s, active methylene) and 4.1-4.4 (4 H, m, OCH₂CH₃ and CO₂CH₂); m/z 301 [(M + 1)⁺, 1.9], 282 [(M - H₂O)⁺, 19], 255 [(M - OEt)⁺, 10], and 173 [(M - I)⁺, 100] [Found: M⁺, 300.9915. C₈H₁₄IO₄ requires (M + 1)⁺, 300.9936].

tert-Butyl 3-iodo-1-methylpropyl propanedioate (n = 0, R¹ = Me, R² = H, R³ = Bu') 7c. irradiation for 6 h; R_F 0.58 (1:5 EtOAc-hexane); an oil; $\nu_{max}(neat)/cm^{-1}$ 1740sh and 1730; δ (90 MHz) 1.28 [3 H, d, J 6.18, CH(CH₃)OCO], 1.47 (9 H, s, Bu'), 2.0–2.3 [2 H, m, ICH₂CH₂CH(CH₃)O], 3.16 (2 H, t, J7.04, ICH₂), 3.27 (2 H, s, active methylene) and 4.8–5.2 [1 H, m, CH(CH₃)OCO]; m/z 269 [(M – OBu')⁺, 7.1], 215 [(M – I)⁺, 11], 159 (28) and 57 (100) [Found: M⁺, 268.9687. C₇H₁₀IO₃ requires (M – C₄H₉O)⁺, 268.9674].

tert-Butyl 4-iodobutylpropanedioate (n = 1, R¹ = R² = H, R³ = Bu') 7d. Irradiation for 3 h; $R_f 0.55 (1:3 \text{ EtOAc-hexane})$; an oil; $v_{\text{max}}(\text{neat})/\text{cm}^{-1} 1753$; $\delta(90 \text{ MHz}) 1.47 (9 \text{ H, s, Bu'})$, 1.5–2.1 [4 H, m, ICH₂(CH₂)₂CH₂O], 3.21 (2 H, t, J 7.03, ICH₂), 3.28 (2 H, s, active methylene) and 4.16 (2 H, t, J 5.30, CH₂O); m/z 342 (M⁺, 0.1) 286 [(M - C₄H₈)⁺, 8.9] and 57 (100) (Found: M^+ , 342.0313. $C_{11}H_{19}IO_4$ requires M, 342.0328).

tert-Butyl 2-(2-iodoethyl)cyclohexyl propanedioate [n = 1, $R^1, R^2 = -(CH_2)_{4-}, R^3 = Bu'$]7e. Irradiation for 2h; a mixture of stereoisomers; R_F 0.56 (1:5 EtOAc-hexane); an oil; v_{max} -(neat)/cm⁻¹ 1725; δ (90 MHz) 1.1–2.1 (20 H, m, containing s at 1.45), 3.18 (2 H, t, J 5.86, ICH₂), 3.26 (2 H, s, active methylene) and 5.0–5.2 (1 H, m); m/z 340 [(M – C₄H₈)⁺, 2.2] 213 (9.5) and 109 (100) (Found: M⁺, 340.0170. C₁₁H₁₇IO₄ requires M, 340.0171).

tert-Butyl 3,4,5,6-Tetrahydro-2-oxo-2H-pyran-3-carboxylate $(n = 0, R^1 = R^2 = H, R^3 = Bu^t)$ 9a: General Procedure for Intramolecular Cyclization of the Iodoalkyl Propanedioates 7.-To a stirred solution of 7a (166 mg, 0.5 mmol) in benzene (10 cm³) were added successively Et₄NBr (95 mg, 0.5 mmol) and NaH (50%, 48 mg, 1 mmol). The mixture was heated under reflux. After the completion of the reaction (ca. 1 h) the solution was cooled and poured into aq. NH₄Cl. The organic layer was separated, washed with brine, and dried over anhydrous MgSO₄. Evaporation of the solvent gave a crude oil which was purified by PLC on SiO₂ to afford the title compound 9a (70 mg, 70%); $R_{\rm F}$ 0.23 (CH₂Cl₂); an oil; $v_{\rm max}({\rm neat})/{\rm cm}^{-1}$ 1720; δ (90 MHz) 1.49 (9 H, s, Bu'), 1.6-2.3 (4 H, m, 4- and 5-H), 3.46 (1 H, t, J 7.47, 3-H) and 4.34 (2 H, t, J 5.5, 6-H); m/z 199 [(M - 1)⁺, 0.1], 145 [(M $- C_4 H_8)^+$, 13], 127 (36) and 57 (100) [Found: M⁺, 199.0992. C₁₀H₁₅O₄ requires $(M - 1)^+$, 199.0970].

Ethyl 3,4,5,6-*tetrahydro*-2-*oxo*-2H-*pyran*-3-*carboxylate* (n = 0, $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$, $\mathbb{R}^3 = \mathbb{E}t$) **9b**. R_f 0.45 (1:1 EtOAc-hexane); an oil; v_{max} (neat)/cm⁻¹ 1725; δ (90 MHz) 1.30 (3 H, t, J 7.03, OCH₂CH₃), 1.6–2.4 (4 H, m, 4- and 5-H), 3.56 (1 H, t, J 7.47, 3-H), 4.15–4.45 (4 H, m, OCHH₂CH₃ and 6-H); *m*/*z* 172 (M⁺, 5.6), 127 [(M - OEt)⁺, 37] and 100 [(M - CO₂Et)⁺, 85] and 55 (100) (Found: M⁺, 172.0748. $C_8H_{12}O_4$ requires *M*, 172.0735).

tert-Butyl 3,4,5,6-tetrahydro-6-methyl-2-oxo-2H-pyran-3carboxylate (n = 0, R¹ = Me, R² = H, R³ = Bu') **9c**. A mixture of diastereoisomers; R_F 0.46 (1:3 EtOAc-hexane); v_{max} (neat)/cm⁻¹ 1720; δ (90 MHz) 1.37 and 1.39 (combined 3 H, 2d, J 6.18, each, 6-Me), 1.49 (9 H, s, Bu'), 1.6–2.3 (4 H, m, 4and 5-H), 3.2–3.6 (1 H, m, 3-H) and 4.3–4.6 (1 H, m, 6-H); m/z 199 [(Me - Me)⁺, 1.7], 159 [(M - C₄H₈)⁺, 11], 141 [(M -OBu')⁺, 20] and 57 (100) [Found: M⁺, 199.1101. C₁₀H₁₅O₄ requires (M - CH₃)⁺, 199. 1107].

tert-Butyl2,3,4,5,5a,6,7,8,9,9a-decahydro-2-oxobenzyl[1]oxepine-3-carboxylate [n = 1, R¹, R² = $-(CH_2)_4$ -, R³ = Bu^r] **9**e. A mixture of diastereoisomers; R_F 0.48 (1:3 EtOAc-hexane); ν_{max} (neat)/cm⁻¹ 1735; δ (90 MHz) 0.9–2.5 (22 H, m containing s at 1.49) and 3.0–5.1 (2 H, m, 3-, 9a-H); m/z 195 [(M – OBu^r)⁺, 9.9] 177 (13), 108 (22) and 57 (100) [Found: M⁺, 195.1177. C₁₁H₁₅O₃ requires (M – C₄H₉O)⁺, 195.1158].

tert-Butyl 3-Benzyl-3,4,5,6-tetrahydro-2-oxo-2H-pyran-3carboxylate ($R^1 = H$, $R^4 = CH_2Ph$) 10a.—A mixture of iodoalkyl malonate 7a (131 mg, 0.4 mmol), Et₄NBr (152 mg, 0.8 mmol) and NaH (50%, 43 mg, 0.9 mmol) in benzene (8 cm³) was heated under reflux for 1 h, as described above. Methyl iodide (71 mg, 0.5 mmol) was then added to the reaction mixture, and the solution was heated under reflux for an additional 30 min. The usual work-up and purification as that mentioned above gave the title compound 10a (71 mg, 61%); $R_F 0.36$ (1:5 EtOAchexane); $v_{max}(neat)/cm^{-1}$ 1727; $\delta(90 \text{ MHz})$ 1.47 (9 H, s, Bu^t), 1.5-2.2 (4 H, m, 4- and 5-H), 3.05 (1 H, d, J13.63, benzylic), 3.49 (1 H, d, J 13.63, benzylic), 3.8-4.3 (2 H, m, 6-H) and 7.24 (5 H, m, aromatic); m/z 290 (M⁺, 0.17), 234 [(M - C₄H₈)⁺, 70] and 189 [(M - CO_2Bu')⁺, 100] (Found: \overline{M}^+ , 290.1525. $C_{17}H_{22}O_4$ requires M, 290.1518).

tert-Butyl 3,4,5,6-tetrahydro-3,6-dimethyl-2-oxo-2H-pyran-3-carboxylate (R¹ = R⁴ = Me) **10b**. This compound was ob-

tained by the same procedure as mentioned above as a mixture of diastereoisomers; $R_{\rm F}$ 0.46 (1:3 EtOAc-hexane); $\nu_{\rm max}({\rm neat})/{\rm cm^{-1}}$ 1725; δ (90 MHz) 1.3–2.3 (19 H, m containing s at 1.47) and 4.3–4.6 (1 H, m, 6-H); m/z 213 [(M – Me)⁺, 0.5], 155 [(M – OBu^t, 5.3], 128 (14) and 57 (100) [Found: M⁺, 213.1113. C₁₁H₁₇O₄ requires (M – CH₃)⁺, 213.1127].

3-Benzyl-3,4,5,6-tetrahydropyran-2-one 11.¹²—A solution of lactone 10a (45 mg, 0.16 mmol) in CF_3CO_2H (1 cm³) was stirred for 2.5 h at room temperature and then heated under reflux for 45 min. After cooling, trifluoroacetic acid was removed under reduced pressure. Purification of the residue by PLC on SiO₂ gave compound 11 (28 mg, 92%); R_F 0.17 (1:3 EtOAc-hexane).

Ethyl 7-*Iodo*-3-*oxoheptanoate* 13.—β-Scission of hydroxy ester 12¹⁰ was carried out in a similar manner as described for the β-scission of lactols 6 to give the title compound 13 (irradiation for 6 h). A keto-enol mixture; $R_{\rm f}$ 0.39 (1:5 EtOAchexane); $\nu_{\rm max}$ (neat)/cm⁻¹ 3450, 1735, 1710 and 1635; δ (90 MHz) 1.28 (3 H, t, J 7.25, OCH₂CH₃), 1.6–1.9 (m, 4 H, 5- and 6-H), 2.4–2.7 (2 H, m, 4-H), 3.18 (2 H, t, J 6.58, -CH₂I), 3.43 (1.6 H, s, COCH₂CO), 4.20 (2 H, q, J 7.25, OCH₂CH₃), 4.98 (0.2 H, s, vinylic H of enol form) and 12.10 (0.2 H, s, OH of enol form); m/z 298 (M⁺, 0.7), 171 [(M – I)⁺, 73] and 55 (100) (Found: M⁺, 298.0058. C₉H₁sIO₃ requires, *M*, 298.0066).

Ethyl 2-Oxocyclohexanecarboxylate 14.—This compound was prepared by the same procedure described for the transformation of iodoalkyl malonate 7a into lactone 9b using ester 13 as the starting material and identified by a direct comparison with a commercially obtainable sample.

Ethyl 1-*Benzyl*-2-oxocyclohexanecarboxylate **15**.—This compound was obtained by the same procedure as described for the preparation of lactone **10a** using ester **13** as the starting material; R_F 0.45 (1:5 EtOAc–hexane); an oil; v_{max} (neat)/cm⁻¹ 1735 and 1710; δ (90 MHz) 1.16 (3 H, t, J 7.25, OCH₂CH₃), 1.3–2.0 (6 H, m), 2.2–2.6 (2 H, m, 3-H), 2.86 (1 H, d, J 13.84, benzylic H), 3.32 (1 H, d, J 13.84, benzylic H) 4.09 (2 H, q, J 7.25, OCH₂CH₃) and 7.0–7.4 (5 H, m); *m*/*z* 260 (M⁺, 8.9), 187 [(M – CO₂Et)⁺, 36] and 91 [(M – CH₂Ph)⁺, 100] (Found: M⁺, 260.1408. C₁₆H₂₀O₃ requires *M*, 260.1411).

References

- 1 Part 144, K. Kobayashi, M. Suzuki and H. Suginome, J. Chem. Soc., Perkin Trans. 1, 1993, 2837.
- 2 Inter alia, H. Suginome, Y. Seki, S. Yamada, K. Orito and N. Miyaura, J. Chem. Soc., Perkin Trans. 1, 1985, 1431; H. Suginome and Y. Yamada, J. Org. Chem., 1985, 50, 2489; H. Suginome and S. Yamada, Tetrahedron, 1987, 43, 3371.
- 3 H. Suginome, S. Yamada and J. B. Wang, J. Org. Chem., 1990, 55, 2170; H, Suginome and J. B. Wang, Steroids, 1990, 55, 353.
- 4 For reviews, see (a) C. D. Gutsche and D. Redmore, *Carbocyclic Ring Expansion Reactions*, Academic Press, New York, 1968; (b) M. Hesse, *Ring Enlargement in Organic Chemistry*, VCH, Weinheim, 1991.
- M. Tiffeneau, P. Weill and B. Tchoubar, C.R. Seances Acad. Sci., 1937, 205, 54; P. A. S. Smith and D. R. Baer, Org. React. (N. Y.), 1960, 11, 157; H. Metzger, in Houben-Weyl, Methoden der Organischen Chemie, vol. 10/4, Georg Thieme, Stuttgart, 1968, p. 233; H. Gerlach, Helv. Chim. Acta, 1972, 55, 2962; W. E. Parham and C. S. Roosevelt, J. Org. Chem., 1972, 37, 1975.
- 6 For reviews, see (a) C. D. Gutsche, Org. React. (N.Y.), 1954, 8, 364; (b) C. A. Boswell, in Organic Reactions in Steroid Chemistry, vol. II, eds. J. Fried and J. A. Edwards, Van Nostrand, Reinhold Company, New York, 1972, p. 354.
- 7 E.g. A. Kiref and J. L. Laboureur, J. Chem. Soc., Chem. Commun., 1986, 702.
- 8 (a) H. Kise, Y. Arase, S. Shimaishi, M. Seko and T. Asahara, J. Chem. Soc., Chem. Commun., 1976, 29; (b) F. Theil, B. Costisella, H. Grob, H. Schick and S. Schwartz, J. Chem. Soc., Perkin Trans. 1, 1987, 2469; (c) M. J. Davies, C. J. Moody and R. J. Taylor, J. Chem. Soc., Perkin Trans. 1, 1991, 1.
- 9 A. J. Dugan, M. A. Adams, P. J. Brynes and J. Meinwald, Tetrahedron Lett., 1978, 4323.
- 10 H. O. House, H. Babad, R. D. Toothill and A. W. Noltes, J. Org. Chem., 1962, 27, 4141.
- 11 A.G.M. Barrett, M.J. Betts and A. Fenwick, J. Org. Chem., 1985, 50, 169.
- 12 J. F. Ruppert and J. D. White, J. Org. Chem., 1974, 39, 269.
- 13 (a) T. L. Cairns and B. E. England, J. Org. Chem., 1956, 21, 140; (b)
 M. Akhtar, D. H. R. Barton and P. G. Sammes, J. Am. Chem. Soc., 1965, 87, 4601.
- 14 (a) P. Kabasakalian and E. R. Townley, J. Org. Chem., 1962, 27, 2918;
 (b) M. Akhtar and D. H. R. Barton, J. Am. Chem. Soc., 1964, 86, 1528; (c) M. Akhtar, P. Hunt and P. B. Dewhurst, J. Am. Chem. Soc., 1965, 87, 1807; (d) H. Suginome and S. Yamada, J. Org. Chem., 1984, 49, 3753.

Paper 3/03092J Received 1st June 1993 Accepted 17th August 1993